ta có bđt \(\left(\frac{a+b}{2}\right)^n\le\frac{a^n+b^n}{2}\) với mọi \(a+b\ge0\) và \(n\inℝ\)
\(1+\sqrt[1995]{1995}=2\sqrt[1995]{\left(\frac{1+\sqrt[1995]{1995}}{2}\right)^{1995}}\le2\sqrt[1995]{\frac{1+1995}{2}}=2\sqrt[1995]{\frac{1996}{2}}\)
\(=\sqrt[1995]{2^{1994}.1996}=\sqrt[1995]{2.2...2.1996}< \sqrt[1995]{2.3...1995.1996}=\sqrt[1995]{1996!}\)