x^2+7x+2 chia hết cho x+7
x(x+7)+2 chia hết cho x+7
Vì x+7 chia hết cho x+7 nên x(x+7) chia hết cho x+7
=>2 chia hết cho x+7
hay x+7EƯ(2)={1;-1;2;-2}
=>xE{-6;-8;-5;-9}
Vậy để (x^2+7x+2) chia hết cho x+7 thì xE{-9;-8;-6;-5}
x^2+7x+2 chia hết cho x+7
x(x+7)+2 chia hết cho x+7
Vì x+7 chia hết cho x+7 nên x(x+7) chia hết cho x+7
=>2 chia hết cho x+7
hay x+7EƯ(2)={1;-1;2;-2}
=>xE{-6;-8;-5;-9}
Vậy để (x^2+7x+2) chia hết cho x+7 thì xE{-9;-8;-6;-5}
so sánh hai số hữu tỉ \(\frac{a}{b}va\frac{a+2012}{b+2012}\)
cho a và b là 2 số nguyên(a<0 và b>0)
so sánh 2 số hữu tỉ \(\frac{a}{b}\) và \(\frac{a+2012}{b+2012}\)
Cho a,b thuộc Z ,a<0,b>0. So sánh 2 số hữu tỉ \(\frac{a}{b}\) và \(\frac{a+2012}{b+2012}\)
Cho a,b thuộc Z , a< 0, b>0. So sánh hai số hữu tỉ a/b và (a + 2012) / (b + 2012)
Cho a,b thuộc tập hợp số nguyên,a<0,b>0
So sánh hai số hữu tỉ a/b và a+2012/b=2012
So sánh A và B trong những trường hợp sau:
a) A = \(\frac{-2012}{4025}\); B = \(\frac{-1999}{3997}\)
b) A = \(\frac{2011}{1.2}+\frac{2011}{3.4}+...+\frac{2011}{1999.2000}\); B = \(\frac{2012}{1001}+\frac{2012}{1002}+...+\frac{2012}{2000}\)
\(A=\frac{2011}{\sqrt{2012}}+\frac{2012}{\sqrt{2011}};B=\sqrt{2011}+\sqrt{2012}.\)
So sánh A và B
Cho a,b thuộc Z,a<0 và b>0
So sánh 2 số hữu tỉ a/b và a+2012/b+2012 ta được a/b ........a+2012/b+2012
Cho a,b \(\varepsilon\)Z; a<0, b>0
So sánh hai số hữu tỉ \(\frac{a}{b}\) và \(\frac{a+2012}{b+2012}\)phân số nào lớn hơn? vì sao?.