Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mun toe

so sánh hai số bằng cách vận dụng hằng đẳng thức

a) A=\(2^{16}\) và B=\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

b) A=\(4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)  và B=\(3^{218}-1\)

Phước Nguyễn
18 tháng 4 2016 lúc 14:03

\(a.\)

Ta sẽ biến đổi biểu thức  \(B\)  quy về dạng có thể dùng được hằng đẳng thức  \(\left(x-y\right)\left(x+y\right)=x^2-y^2\), khi đó:

\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

                                                                                     \(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

                                                                                     \(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

                                                                                     \(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1\)

Vì  \(2^{16}>2^{26}-1\)  nên  \(2^{16}>\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

Vậy,  \(A>B\)

Tương tự với câu  \(b\)  kết hợp với phương pháp tách hạng tử, khi đó xuất hiện hằng đẳng thức mới và dễ dàng đơn giản hóa biểu thức \(A\). Ta có:

\(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

                                                                                \(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

                                                                                \(=\frac{1}{2}\left(3^{64}-1\right)\left(3^{64}+1\right)=\frac{1}{2}\left(3^{128}-1\right)\)

Mặt khác, do  \(\frac{1}{2}<1\)  nên   \(\frac{1}{2}\left(3^{128}-1\right)<3^{128}-1\)

Vậy,  \(B>A\)


Các câu hỏi tương tự
Trần Quốc Tuấn hi
Xem chi tiết
Trần Hà Trang
Xem chi tiết
Vũ Nguyễn Phương Thảo
Xem chi tiết
Nguyễn Ngọc k10
Xem chi tiết
thururu
Xem chi tiết
Hồ Quỳnh Thơ
Xem chi tiết
Nguyễn Xuân Nhi
Xem chi tiết
Nguyễn Ngọc k10
Xem chi tiết
Lê Đức Khanh
Xem chi tiết