\(\frac{10^{15}+1}{10^{16}+1}=\frac{10^{16}+10}{10^{17}+10}\)
Vì B<1 suy ra B<\(\frac{10^{16}+1+9}{10^{17}+1+9}=\frac{10^{16}+10}{10^{17}+10}=A\)
Vậy B<A
Ta có: \(10A=\frac{10^{16}+10}{10^{16}+1}=1+\frac{9}{10^{16}+1}\) ; \(10B=\frac{10^{17}+10}{10^{17}+1}=1+\frac{9}{10^{17}+1}\)
Mà \(\frac{9}{10^{16}+1}>\frac{9}{10^{17}+1}\) nên \(10A>10B\) => \(A>B\)