A,Ta có:2711=(33)11=333
818=(34)8=332
Vì 33>32=>333>332
hay 2711>818
Vậy 2711>818
B,Ta có:6255=(54)5=520
1257=(53)7=521
Vì 20<21=>520<521
hay 6255<1257
Vậy 6255<1257
C,Ta có:536=(53)12=12512
1124=(112)12=12112
Vì 125>121=>12512>12112
hay 536>1124
Vậy 536>1124
A. \(27^{11}=\left(3^3\right)^{11}=3^{3\cdot11}=3^{33}\)
\(81^8=\left(3^4\right)^8=3^{4\cdot8}=3^{32}\)
có \(3^{33}>3^{32}\)
\(\Rightarrow27^{11}>81^8\)
B \(625^5=\left(5^4\right)^5=5^{4\cdot5}=5^{20}\)
\(125^7=\left(5^3\right)^7=5^{3\cdot7}=5^{21}\)
có \(5^{20}< 5^{21}\)
\(\Rightarrow625^5< 125^7\)
a) Ta có : \(27^{11}=\left(3^3\right)^{11}=3^{33}>3^{32}=\left(3^4\right)^8=81^8\)
\(\Rightarrow27^{11}>81^8\)
b) Ta có : \(625^5=\left(5^4\right)^5=5^{20}< 5^{21}=\left(5^3\right)^7=125^7\)
\(\Rightarrow625^5< 125^7\)
c) Ta có : \(5^{36}=\left(5^3\right)^{12}=125^{12}>121^{12}=\left(11^2\right)^{12}=11^{24}\)
\(\Rightarrow5^{36}>11^{24}\)
a, Ta có: 2711 = ( 33)11 = 333
818 = ( 34)8 = 332
Vậy 333 > 332 nên suy ra 2711 > 818
b, Ta có: 6255 = (54)5 = 520
1257 = (53)7 = 521
Vậy 521 > 520 nên suy ra 6255 < 1257
c, Ta có: 536 = 56.6 = (56)6 = 156256
1124 = 114.6 = (114)6 = 146416
Vậy 156256 > 146416 nên suy ra 536 > 1124