Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2011}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2010}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2010}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\right)\)
\(A=1-\frac{1}{2^{2011}}\)
Vì \(1-\frac{1}{2^{2011}}< 1-\frac{1}{2^{2010}}\)nên A < \(1-\frac{1}{2^{2010}}\)
Ủng hộ mk nha !!! ^_^
cho mk một tk đi bà con ơi
ủng hộ mk đi làm ơn