\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{2^3}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}}\)
\(=1-\frac{1}{2^{100}}
ssssssssssssssssssssssssssssssssssssss
\(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\)
\(=\frac{1}{1}-\frac{1}{2^{100}}\)
\(1-\frac{1}{2^{100}}< 1\)