So sánh
\(\frac{2009^{2009}+1}{2009^{2010}+1}\)và \(\frac{2009^{2010}-2}{2009^{2011}-2}\)
A=\(\frac{2009^{2009}+1}{2009^{2010+1}}\)và B=\(\frac{2009^{2010}-2}{2009^{2011}-2}\)
so sánh
cho S = \(\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+.....+\frac{2010}{2^{2009}}+\frac{2011}{2^{2010}}\)
SO SÁNH S VỚI 3
Hông quy đồng mẫu số, hãy so sánh A và B, biết
A= \(\frac{-9}{10^{2010}}+\frac{-19}{10^{2011}}\)
B= \(\frac{-9}{10^{2011}}+\frac{-19}{10^{2010}}\)
mình đang cần gấp
a, Tính : \(\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right).230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{10}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
b, Tính : \(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)
c, Tính : \(\frac{\left(1+2+3+...+99+100\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+...+99-100}\)
So sánh :
A=\(\frac{2009^{2009}+1}{2009^{2010}+1}\)và B=\(\frac{2009^{2010}-2}{2009^{2011}-2}\)
Tính:
a.A = \(\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right).230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{10}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
b. B = \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)
c. C = \(\frac{\left(1+2+3+...+99+100\right).\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right).\left(63.1,2-21.3,6\right)}{1-2+3-4+...+99-100}\)
H = \(\frac{\frac{2010}{1}+\frac{2009}{2}+...+\frac{3}{2008}+\frac{2}{2009}+\frac{1}{2010}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}\) =?
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2011}}{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+....+\frac{1}{2010}}\)