a) ta có A=\(\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
B=\(\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
Vì 10^7-8 <10^8-7 nên 1+ 13/10^7-8>1+13/10^8-7
Vậy A>B
Các bạn làm cả phần B và C có lời giải đi!!!
Ta có: \(A=\frac{10^{1992}+1}{10^{1991}+1}\)=> \(\frac{A}{10}=\frac{10^{1992}+1}{10.\left(10^{1991}+1\right)}\)=>\(\frac{A}{10}=\frac{10^{1992}+1}{10^{1992}+10}\)=>\(\frac{A}{10}=\frac{10^{1992}+10-9}{10^{1992}+10}\)=>\(\frac{A}{10}=\frac{10^{1992}+10}{10^{1992}+10}-\frac{9}{10^{1992}+10}\)=>\(\frac{A}{10}=1-\frac{9}{10^{1992}+10}\)
\(B=\frac{10^{1993}+1}{10^{1992}+1}\)=>\(\frac{B}{10}=\frac{10^{1993}+1}{10.\left(10^{1992}+1\right)}\)=>\(\frac{B}{10}=\frac{10^{1993}+1}{10^{1993}+10}\)=>\(\frac{B}{10}=\frac{10^{1993}+10-9}{10^{1993}+10}\)=>\(\frac{B}{10}=\frac{10^{1993}+10}{10^{1993}+10}-\frac{9}{10^{1993}+10}\)=>\(\frac{B}{10}=1-\frac{9}{10^{1993}+10}\)
Ta có: \(10^{1992}+10< 10^{1993}+10\)
=> \(\frac{1}{10^{1992}+10}>\frac{1}{10^{1993}+10}\)
=>\(1-\frac{1}{10^{1992}+10}< 1-\frac{1}{10^{1993}+10}\)
=> \(A< B\)