Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đặng Hoàng Mỹ Anh

so sánh các lũy thừa sau:

a.2300 và 3200

b.291và 535

c.912và 277

Anna
21 tháng 6 2018 lúc 20:52

a, \(2^{300}=2^{3.100}=8^{100}\)

\(3^{200}=3^{2.100}=9^{100}\)

Vì \(9^{100}>8^{100}\Rightarrow3^{200}>2^{300}\)

b, \(2^{91}=2^{13.7}=8192^7\)

\(5^{35}=5^{5.7}=3125^7\)

Vì \(8192^7>3125^7\Rightarrow2^{91}>5^{35}\)

c, \(9^{12}=\left(3^3\right)^{12}=3^{36}\)

\(27^7=\left(3^3\right)^7=3^{21}\)

Vì \(3^{36}>3^{21}\Rightarrow9^{12}>27^7\)

Lưu Thiên Hương
21 tháng 6 2018 lúc 21:08

a) 2^300= 2^3.100=8^100

3^200=3^2.100=9^100

Vì 9^100>8^100 => 3^100>2^300

b) 2^91=2^13.7=8192^7

5^35=5^5.7=3195^7

Vì 8192^7>3125^7 => 2^91>5^35

c) 9^12=(33)12=3^36

27^7=(33)7=3^21

Vì 3^36>3^21 => 9^12>27^7

Nguyệt
29 tháng 9 2018 lúc 12:53

2300=(23)100=8100

318=(32)100=9100

vì 9>8=>9100>8100


Các câu hỏi tương tự
Vũ Quang Minh
Xem chi tiết
Phạm Phương Anh
Xem chi tiết
Đặng Trịnh Gia Phát
Xem chi tiết
Nguyễn Phương Ngân
Xem chi tiết
Vy Le
Xem chi tiết
Đức Phan Minh
Xem chi tiết
huynh van binh
Xem chi tiết
siêu trộm từ thế kỉ XXII
Xem chi tiết
nguyễn thu ánh
Xem chi tiết
Lê Lâm Thảo Nguyên
Xem chi tiết