Ta có 27^5=3^3^5=3^15
243^3=3^5^3=3^15
Vậy A=B
2^300=2^(3.100)=2^3^100=8^100
3^200=3^(2.100)=3^2^100=9^100
Vậy A<B
\(a,A=27^5\)và \(B=243^3\)
Ta xét :
\(A=27^5=\left(3^3\right)^5=3^{15}\)
\(B=243^3=\left(3^5\right)^3=3^{15}\)
Mà \(3^{15}=3^{15}\)
\(\Rightarrow A=B\)
\(b,A=2^{300}\)và \(B=3^{200}\)
Ta xét :
\(A=2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(B=3^{200}=\left(3^2\right)^{100}=9^{100}\)
Mà \(9^{100}>8^{100}\)
\(\Rightarrow B>A\)
a) \(27^5\)= \(\left(3^3\right)^5\)= \(3^{15}\)
\(243^3\)= \(\left(3^5\right)^3\)= \(3^{15}\)
Vì \(3^{15}\)= \(3^{15}\)
\(\Rightarrow\)..................................
b) \(2^{300}\)= \(\left(2^3\right)^{100}\)= \(8^{100}\)
\(3^{200}\)= \(\left(3^2\right)^{100}\)= \(9^{100}\)
Vì \(9^{100}\)> \(8^{100}\)
\(\Rightarrow\).............................................