\(ĐKXĐ:x\ne1;x\ne0\)
\(A=\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{2\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{2x-2\sqrt{x}}{2x+2\sqrt{x}}\)
\(N=\frac{\sqrt{x}-3}{2\sqrt{x}}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)2\sqrt{x}}=\frac{x-2\sqrt{x}-3}{2x+2\sqrt{x}}\)
Ta có :
\(x\ge0>-3\)
\(\Leftrightarrow x>-3\)
\(\Leftrightarrow x+\left(x-2\sqrt{x}\right)>-3+\left(x-2\sqrt{x}\right)\)
\(\Leftrightarrow2x-2\sqrt{x}>x-2\sqrt{x}-3\)
\(\Leftrightarrow\frac{2x-2\sqrt{x}}{2x+2\sqrt{x}}>\frac{x-2\sqrt{x}-3}{2x+2\sqrt{x}}\)
\(\Leftrightarrow A>N\)