không dùng máy tính hãy so sánh: \(\frac{2014}{\sqrt{2015}}+\frac{2015}{\sqrt{2014}}và\sqrt{2014}+\sqrt{2015}\)
không dùng máy tính hãy so sánh\(\frac{2014}{\sqrt{2015}}+\frac{2015}{\sqrt{2014}}\) với \(\sqrt{2014}+\sqrt{2015}\)
So sánh A và B:
\(A=\sqrt{2015^2-1}-\sqrt{2014^2-1}\)
\(B=\frac{2.2014}{\sqrt{2015^2-1}+\sqrt{2014^2-1}}\)
So sánh
a, \(\frac{2014}{\sqrt{2015}}\) + \(\frac{2015}{\sqrt{2014}}\) và. \(\sqrt{2014}\) + \(\sqrt{2015}\)
b, \(\frac{9}{\sqrt{11}-\sqrt{2}}\) và \(\frac{6}{3-\sqrt{3}}\)
Cho M=\(\frac{\sqrt{2}-\sqrt{1}}{1+1}+\frac{\sqrt{3}-\sqrt{2}}{2+3}+\frac{\sqrt{4}-\sqrt{3}}{3+4}+...+\frac{\sqrt{2015}-\sqrt{2014}}{2014+2015}\)
Hãy so sánh M với 1/2
a/Tính: A= \(\sqrt{1+2006^2+\frac{2006^2}{2007^2}}+\frac{2006}{2007}\)
b/Cho A=\(\sqrt{2015^2-1}-\sqrt{2014^2-1}\)và B=\(\frac{2.2014}{\sqrt{2015^2-1}+\sqrt{2014^2-1}}\)
So sánh A vs B
Chứng minh \(\frac{2014}{\sqrt{2015}}+\frac{2015}{\sqrt{2014}}>\sqrt{2014}+\sqrt{2015}\)
so sánh \(\sqrt{2015^2-1}-\sqrt{2014^2-1}\) và \(\frac{2.2014}{\sqrt{2015^2-1}+\sqrt{2014^2-1}}\)
Tính gía trị biểu thức:
\(A=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+....+\frac{1}{2014\sqrt{2013}+2013\sqrt{2014}}+\frac{1}{2015\sqrt{2014}+2014\sqrt{2015}}\)