Xét hiệu \(A-B=\frac{2013-2012}{a^n}+\frac{2011-2012}{a^m}=\frac{1}{a^n}-\frac{1}{a^m}\)
TH1: n > m > 0
=> an > am \(\Rightarrow\frac{1}{a^n}0\Rightarrow A>B\)
Xét hiệu \(A-B=\frac{2013-2012}{a^n}+\frac{2011-2012}{a^m}=\frac{1}{a^n}-\frac{1}{a^m}\)
TH1: n > m > 0
=> an > am \(\Rightarrow\frac{1}{a^n}0\Rightarrow A>B\)
1.Cho phân số \(\frac{a}{b}\)(a, b \(\in\)N, b\(\ne\)0)
Giả sử \(\frac{a}{b}\)> 1 và m\(\in\)N, m\(\ne\)0. Chứng minh rằng:
\(\frac{a}{b}\)> \(\frac{a+m}{b+m}\)
2.So sánh: A=\(\frac{2011}{2012}\)+\(\frac{2012}{2013}\)và B=\(\frac{2011+2012}{2012+2013}\)
Cho ba số a,m,n\(\in\)N,hãy so sánh
A=\(\frac{2012}{a^m}\)+\(\frac{2012}{a^n}\)và B=\(\frac{2013}{a^m}\)+\(\frac{2011}{a^n}\)
a) So sánh P và Q
Biết\(P=\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\) và\(\frac{2010+2011+2012}{2011+2012+2013}\)
b) Tìm hai số tự nhiên a và b, biết: BCNN(a,b)=420;ƯCLN(a,b)=21 và a+21=b
CHO : \(A=\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\)
VÀ : \(B=\frac{2010+2011+2012}{2011+2012+2013}\)
SO SÁNH A VÀ B
cho \(A=\frac{2011}{2012}+\frac{2012}{2013};B=\frac{2011+2013}{2012+2013}\)So sánh A và B
\(\frac{A^{2011+2012}}{A^{2012+2013}}\)VÀ\(\frac{A^{2011}}{A^{2012}}+\frac{A^{2012}}{A^{2013}}\)
So sánh
so sánh A và B biết \(A=\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013};B=\frac{1}{3}+\frac{1}{4}+...+\frac{1}{17}\)
So sánh \(A=\frac{2011}{2012}+\frac{2012}{2013}\) và \(B=\frac{2011+2012}{2012+2013}\)
So sánh A và B biết : \(A=\frac{2012^{2012}+1}{2012^{2013}+1};B=\frac{2012^{2011}+1}{2012^{2012}+1}\)