CMR \(A=\frac{1}{2}\cdot\left(\frac{1}{6}+\frac{1}{24}+\frac{1}{60}+...+\frac{1}{9240}\right)>\frac{57}{462}\)
CM: A=\(\frac{1}{2}\left(\frac{1}{6}+\frac{1}{24}+\frac{1}{60}+...+\frac{1}{9240}\right)>\frac{57}{462}\)
CMR\(A=\frac{1}{2}\left(\frac{1}{6}+\frac{1}{24}+\frac{1}{60}+...+\frac{1}{9240}\right)>\frac{57}{462}\)
Chứng minh : A = \(\frac{1}{2}\left(\frac{1}{6}+\frac{1}{24}+\frac{1}{60}+...+\frac{1}{9240}\right)>\frac{57}{462}\)
Chứng minh A= \(\frac{1}{2}\left(\frac{1}{6}+\frac{1}{24}+\frac{1}{60}+...+\frac{1}{9240}\right)>\frac{57}{462}\)
Chứng minh A= \(\frac{1}{2}\left(\frac{1}{6}+\frac{1}{24}+\frac{1}{60}+...+\frac{1}{9240}\right)>\frac{57}{462}\)
Chứng minh: A = \(\frac{1}{2}.\left(\frac{1}{6}+\frac{1}{24}+\frac{1}{60}+...+\frac{1}{9240}\right)>\frac{57}{462}\)
Trình bày luôn cách giải
Chứng minh: \(\frac{1}{2}\left(\frac{1}{6}+\frac{1}{24}+\frac{1}{60}+...+\frac{1}{9240}\right)>\frac{57}{462}\)
Ai trả lời đáp án và lời giải đầu tiên sẽ có 4 like.
a) Tính tổng \(S=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)
b) Chứng minh: \(A=\frac{1}{2}+\left(\frac{1}{6}+\frac{1}{24}+\frac{1}{60}+...+\frac{1}{9240}\right)>\frac{57}{462}\)