so sánh hai số:A=1 và B=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{99^2}+\frac{1}{100^2}\)
Tính \(\frac{A}{B}\), biết:
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\)
\(B=\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{98}{2}+\frac{99}{1}\)
Tìm tỉ số phần trăm của A và B biết:
\(A=\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+.....+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}}\) \(B=\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-....-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+....+\frac{1}{500}}\)
\(E=\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{98}{2}+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
a,So Sánh: A và B
A=\(\frac{98^{99}+1}{98^{89}+1}\) và B=\(\frac{98^{98}+1}{98^{88}+1}\)
b,Cho S=\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}+\frac{1}{20}\)so sánh S với \(\frac{1}{2}\)
c, Cho A=\(\frac{5n-11^2}{4n-13}\) \(\left(n\in Z\right)\)
Tìm giá trị của n để A đạt giá trị lớn nhất
1:
a) Cho A= \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\) . So sánh A và \(\frac{199}{100}\)
b) Tìm tích: \(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.\frac{24}{5^2}.....\frac{99}{10^2}\)
Tính nhanh \(B=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}}{\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+....+\frac{1}{98}+\frac{1}{99}}\)
\(\frac{\frac{1}{19}+\frac{2}{18}+\frac{3}{17}+...+\frac{18}{2}+\frac{19}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{19}+\frac{1}{20}}\)\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}}{\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{2}{98}+\frac{1}{99}}\)
Tính nhanh :
A = \(\left(\frac{2}{3}+\frac{3}{4}+....+\frac{99}{100}\right)\cdot\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+....+\frac{98}{99}\right)-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\cdot\left(\frac{2}{3}+\frac{3}{4}+...+\frac{98}{99}\right)\)