Đặt B =\(32^{17}.8^{19}\)
So sánh :\(A=64^{11}.16^{11}\)và \(B=32^{17}.8^{19}\)
TA có :\(A=64^{11}.16^{11}=\left(64.16\right)^{11}=1024^{11}=\left(2^{10}\right)^{11}\)\(=2^{110}\)
\(B=32^{17}.8^{19}=\left(2^5\right)^{17}.\left(2^3\right)^{19}=2^{85}.2^{57}\)\(=2^{142}\)
VÌ A < B ( 2110< 2142)
Nên A < 3217.819