ta có:\(7A=\frac{7\left(7^{2010}+1\right)}{7^{2011}-1}=\frac{7^{2011}+7}{7^{2011}-1}=\frac{7^{2011}-1+8}{7^{2011}-1}=\frac{7^{2011}-1}{7^{2011}-1}+\frac{8}{7^{2011}-1}=1+\frac{8}{7^{2011}-1}\)
\(7B=\frac{7\left(7^{2011}+1\right)}{7^{2012}-1}=\frac{7^{2012}+7}{7^{2012}-1}=\frac{7^{2012}-1+8}{7^{2012}-1}=\frac{7^{2012}-1}{7^{2012}-1}+\frac{8}{7^{2012}-1}=1+\frac{8}{7^{2012}-1}\)
vì 72011-1<72012-1
\(\Rightarrow\frac{8}{7^{2011}-1}>\frac{8}{7^{2012}-1}\)
=>A>B