\(10A=\frac{10^{1993}+10}{10^{1993}+1}=1+\frac{9}{10^{1993}+1}\)
\(10B=\frac{10^{1994}+10}{10^{1994}+1}=1+\frac{9}{10^{1994}+1}\)
\(10^{1993}+1< 10^{1994}+1\Rightarrow\frac{9}{10^{1993}+1}>\frac{9}{10^{1994}+1}\)
\(\Rightarrow10A>10B\)
\(\Rightarrow A>B\)
Ta có B=\(\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}=\frac{10^{1993}+10}{10^{1992}+10}\)
= \(\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}=\frac{10^{1992}+1}{10^{1991}+1}=A\)
=> B > A
bạn Trần Thùy Dung sai rồi A và B nhân với 1:10