Ta có :
\(A=\frac{10^{11}-1}{10^{12}-1}\) \(B=\frac{10^{11}+1}{10^{11}+1}\)
\(10A=\frac{10^{12}-10}{10^{12}-1}\) \(10B=\frac{10^{11}+10}{10^{11}+1}\)
\(10A=\frac{10^{12}-1-9}{10^{12}-1}\) \(10B=\frac{10^{11}+1+9}{10^{11}+1}\)
\(10A=1-\frac{9}{10^{12}-1}\) \(10B=1+\frac{9}{10^{11}+1}\)
Ta thấy : \(1-\frac{9}{10^{12}-1}< 1\) mà \(1+\frac{9}{10^{11}+1}>1\)
\(\Rightarrow A< B\)
Vậy \(A< B\)
Ủng hộ mk nha !!! ^_^