\(A=\frac{1990^{10}+1}{1990^{11}+1};B=\frac{1990^{11}+1}{1990^{12}+1}\)
Ta có:
\(A=\frac{10\cdot\left(1990^{10}+1\right)}{10\cdot\left(1990^{11}+1\right)}\)
\(\Rightarrow A=\frac{1990^{11}+10}{1990^{12}+10}\)
\(\Rightarrow A=\frac{1990^{11}+1+9}{1990^{12}+1+9}\)
\(\Rightarrow A< B\)