\(A=1+2+2^2+2^3+...+2^{2010}\)
\(2A=2.\left(1+2+2^2+2^3+...+2^{2010}\right)\)
\(2A=2+2^2+2^3+2^4+...+2^{2011}\)
\(A=2A-A=\left(2+2^2+2^3+2^4+..+2^{2011}\right)-\left(1+2+2^2+2^3+..+2^{2010}\right)\)
\(A=2^{2011}-1\)
Vì \(A=2^{2011}-1;B=2^{2011}-1\Rightarrow A=B\)
A= 1+2+22+23+...+22010
2A=2 (2+22+23+...+22010)
2A=22+23+24+...+22011
2A-A= 22011-1
A= 22011-1
Ta có: 22011-1=22011-1
\(\Rightarrow\)...=...Còn lại