A = 20 + 21 + 22 + 23 +...+250
=>2A=2( 20 + 21 + 22 + 23 +...+250)=21+22+23+...+251
=>2A-A=21+22+23+...+251-(20 + 21 + 22 + 23 +...+250)
A=21+22+23+...+251-20-21-22-23-...-250
=251-20
=251-1<251
=>A<B
2A= 2^1 + 2^2 +... +2^51
2A-A= (2^1 + 2^2+... + 2^51)- (2^0 +2^1 +...+2^50)
A=2^51-2^0=2^51-0<2^51=B
Vậy A<B (ĐPCM)
\(A=2^0+2^1+2^2+........+2^{50}\)
\(\Leftrightarrow2A=2.\left(2^0+2^1+2^2+............+2^{50}\right)\)
\(\Leftrightarrow2A=2^1+2^2+2^3+............+2^{51}\)
\(\Leftrightarrow2A-A=\left(2^1+2^2+2^3+.............+2^{51}\right)-\left(2^0+2^1+..............+2^{50}\right)\)
\(\Leftrightarrow A=2^{51}-2^0=2^{51}-1< 2^{51}\Leftrightarrow A< B\)
Chúc bạn học tốt