a) Ta có :\(\left(\sqrt{2}+\sqrt{3}\right)^2=2+3+2\sqrt{2}\cdot\sqrt{3}=5+2\sqrt{6}>5=\left(\sqrt{5}\right)^2\)
\(\Rightarrow\left(\sqrt{2}+\sqrt{3}\right)^2>\left(\sqrt{5}\right)^2\Leftrightarrow\sqrt{2}+\sqrt{3}>\sqrt{5}\)
a) \(\sqrt{2}+\sqrt{3}>\sqrt{5}\)
b) \(\sqrt{2003}+\sqrt{2005}< 2.\sqrt{2004}\)
HOK TOT
b) Ta có: \(\left(\sqrt{2003}+\sqrt{2005}\right)^2=2003+2005+2\sqrt{2003\cdot2005}=4008+2\sqrt{\left(2004-1\right)\left(2004+1\right)}\)
\(=2\cdot2004+2\sqrt{2004^2-1}\)
Mà \(2004^2-1< 2004^2\Rightarrow2\cdot2004+2\sqrt{2004^2-1}< 2\cdot2004+2\sqrt{2004^2}=2\cdot2004+2\cdot2004=4\cdot2004\)
Mặt khác \(\left(2\sqrt{2004}\right)^2=4\cdot2004\)
\(\Rightarrow\left(\sqrt{2003}+\sqrt{2005}\right)^2< \left(2\sqrt{2004}\right)^2\Rightarrow\sqrt{2003}+\sqrt{2005}< 2\sqrt{2004}\)