Ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\)
\(\Rightarrow2A=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^{2016}}\right)\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)\)
\(\Rightarrow A=1-\frac{1}{2^{2016}}\)
\(\Rightarrow A<1\left(đpcm\right)\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2016}}\)
=>\(2A=1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{2015}}\)
=>\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2016}}\right)\)
=>\(A=1-\frac{1}{2^{2016}}\)
Vậy \(A=1-\frac{1}{2^{2016}}\)
2A=\(1+\frac{1}{2}+...........+\frac{1}{2^{2015}}\)
\(2A-A=\left(1+\frac{1}{2}+........+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...........+\frac{1}{2^{2016}}\right)\)
\(2A-A=1-\frac{1}{2^{2016}}\)
\(\Rightarrow A=1-\frac{1}{2^{2016}}<1\)
\(\Rightarrow A<1\)
$A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}$
A = 1/2 + 1/22 + 1/23 + 1/24 + .... + 1/22016
2A = 2(1/2 + 1/22 + 1/23 + 1/24 + .... + 1/22016)
= 1 + 1/2 + 1/22 + 1/23 + ... + 1/22015
2A - A = (1 + 1/2 + 1/22 + 1/23 + ... + 1/22015) - (1/2 + 1/22 + 1/23 + 1/24 + .... + 1/22016)
A = 1 + 1/2 + 1/22 + 1/23 + .... + 1/22015 - 1/2 - 1/22 - 1/23 - 1/24 - .... - 1/22016
= 1 - 1/22016
ma 1 - 1/22016 < 1
nen A < 1
Vay A < 1
cảm ơn bạn nha, mk đã giải đc bài này rùi.