Chứng minh rằng:
A = 1/3 + 1/32 + 1/33 + ..........+ 1/399 < 1/2
B = 3/12x 22 + 5/22 x 32 + 7/32 x 42 +............+ 19/92 x 102 < 1
C = 1/3 + 2/32 + 3/33 + 4/34 +.........+ 100/3100 ≤ 0
A= 3100- 399+ 398-...+ 32- 3
B= (-2)0+ (-2)1+ (-2)2+...+ (-2)2024
C= (\(\dfrac{-1}{5}\))0+ (\(\dfrac{-1}{5}\))1+ (\(\dfrac{-1}{5}\))2+....+ (\(\dfrac{-1}{5}\))2023
So sánh
A=\(\frac{30^{31}+1}{30^{32}+1}\) và B=\(\frac{30^{32}+1}{30^{33}+1}\)
Rút gọn 3100-399+398-397+...+32-3+1
Chứng minh rằng: a, 1/12.22+5/22.32+5/32.42+...+5/92.102 <1 b,1/3+2/32+3/33+...+100/3100 <3/4
So sánh
A=\(\frac{30^{31}+1}{30^{32}+1}\) và B=\(\frac{30^{32}+1}{30^{33}+1}\)
Help me!Mk đg cần rất gấp ai nhanh mk tick cho
So sánh: -(1/3)^33 và -(1/5)^31
tinh A/B, biet
A=1/2*32+1/3*33+1/4*34+...+1/n*(n+30)+...+1/1973*2003
B=1/2*1974+1/3*1975+1/4*1976+...+1/n*(n+1972)+...+1/31*2003.
Bài 1: Tính: A=31+33+35+37+...+3111
B=32+34+36+...+3200
C=51+53+55+...+599
D= 52+54+56+...+5100
Bài 2: Chứng minh các phân số sau tối giản với n ϵ N
a) \(\dfrac{2n+1}{n+1}\) b)\(\dfrac{2n+3}{3n+4}\)
Bài 1 so sánh
a)2^4000 và 4^2000
b)33^44 và 44^33
Bài 2 tìm x biết
a) 3x + 3x+2=810
b)(x-1/4)^2=4/3
c)(x+0,7)^3=-27
Bài 3 chứng tỏ
5^61+25^31+125^21
chia hết cho 31