Giải
\(A=\frac{17^{18}+1}{17^{19}+1}\Leftrightarrow17A=\frac{17\left(17^{18}+1\right)}{17^{19}+1}\)
\(\Leftrightarrow17A=\frac{17^{19}+17}{17^{19}+1}\)
\(\Leftrightarrow17A=\frac{17^{19}+1+16}{17^{19}+1}\)
\(\Leftrightarrow17A=\frac{17^{19}+1}{17^{19}+1}+\frac{16}{17^{19}+1}\)
\(\Leftrightarrow17A=1+\frac{16}{17^{19}+1}\left(1\right)\)
\(B=\frac{17^{17}+1}{17^{18}+1}\Leftrightarrow17B=\frac{17\left(17^{17}+1\right)}{17^{18}+1}\)
\(\Leftrightarrow17B=\frac{17^{18}+17}{17^{18}+1}\)
\(\Leftrightarrow17B=\frac{17^{18}+1+16}{17^{18}+1}\)
\(\Leftrightarrow17B=\frac{17^{18}+1}{17^{18}+1}+\frac{16}{17^{18}+1}\)
\(\Leftrightarrow17B=1+\frac{16}{17^{18}+1}\left(2\right)\)
Từ (1) và (2) suy ra 17A < 17B
Suy ra A < B