Giả sử \(8< \sqrt{15}+\sqrt{17}\)
\(\Leftrightarrow64< 15+2\sqrt{15.17}+17\)(Bình phương hai vế)
\(\Leftrightarrow32< 2\sqrt{15.17}\)
\(\Leftrightarrow16< \sqrt{15.17}\)
\(\Leftrightarrow16< \sqrt{\left(16-1\right)\left(16+1\right)}\)
\(\Leftrightarrow\sqrt{16^2}< \sqrt{16^2-1}\)
\(\Leftrightarrow16^2< 16^2-1\)(vô lí)
Chứng minh tương tự điều giả sử \(8=\sqrt{15}+\sqrt{17}\)
Vậy \(8>\sqrt{15}+\sqrt{17}\)
https://olm.vn/hoi-dap/detail/61596070678.html
bn coppy link này nhé, có bài mak bn đang cần đấy
Ta có:\(8=4+4=\sqrt{16}+\sqrt{16}\)
\(\Rightarrow\left(\sqrt{16}+\sqrt{16}\right)^2=16+16+2\cdot\sqrt{16^2}\)
Mà \(\sqrt{16^2}=\sqrt{15\cdot16+16}>\sqrt{15\cdot16+15}=\sqrt{15\cdot17}\)
Nên suy ra:
\(16+16+2\cdot\sqrt{16^2}=32+2\cdot\sqrt{16^2}>32+2\cdot\sqrt{15\cdot17}=15+17+2\cdot\sqrt{15\cdot17}\)
\(\Leftrightarrow8>\sqrt{15}+\sqrt{17}\)