có \(777^{333}=\left(7.111\right)^{333}=7^{333}.111^{333}=7^{3.111}.111^{333}=\left(7^3\right)^{111}.111^{333}=343^{111}.111^{333}\)
mà \(333^{777}=\left(3.111\right)^{777}=3^{777}.111^{777}=\left(3^7\right)^{111}.111^{777}=2187^{111}.111^{777}\)
ta thấy \(343^{111}< 2187^{111},111^{333}< 111^{777}\)
=> \(343^{111}.111^{333}< 2187^{111}.111^{777}\)=> \(333^{777}< 777^{333}\)
vậy...