\(\left(-5\right)^{30}=5^{30}=5^{3.10}=\left(5^3\right)^{10}=125^{10}\)
\(\left(-3\right)^{50}=3^{50}=3^{5.10}=\left(3^5\right)^{10}=243^{10}\)
do \(125^{10}< 243^{10}\)
nên \(\left(-5\right)^{30}< \left(-3\right)^{50}\)
\(\left(-5\right)^{30}=\left[\left(-5\right)^3\right]^{10}=125^{10}\)
\(\left(-3\right)^{50}=\left[\left(-3\right)^5\right]^{10}=243^{10}\)
mà \(125^{10}< 243^{10}=>\left(-5\right)^{30}< \left(-3\right)^{50}\)