\(3^{21};2^{31}\)
2^31= (2^3)^10 x 2= 8^10 x 2
3^21= (3^2)^10 x 3= 9^10 x 3
=> 3^21>2^31
anh em trả lời được ăn bioziem miễn phí hihi
321 = ( 32)10 . 3 = 910 . 3
231 = (23)10 . 2 = 810 . 3
\(\Rightarrow\)321 > 231
Ta có 2 cách:
Cách 1:
\(3^{21}\)\(=\left(3^7\right)^3\) \(=2187^3\)
\(2^{31}\) < \(2^{33}\)= \(\left(2^{11}\right)^3\)\(=2048^3\)
\(==>3^{21}\)\(>2^{33}\)\(>2^{31}\)
Cách 2:
\(2^{31}\)\(=\left(2^3\right)^{10}\)x \(2\)\(=8^{10}\)x \(2\)
\(3^{21}\)\(=\left(3^2\right)^{10}\)x \(3\)\(=9^{10}\)x \(3\)
\(\Rightarrow\)\(3^{21}\)\(>2^{31}\)