\(=27^{100.2}và25^{100.3}\)
\(=\left(27^2\right)^{100}và\left(25^3\right)^{100}\)
\(\Rightarrow729^{100}< 15625^{100}\)
\(=27^{100.2}\)và \(25^{100.3}\)
\(=\left(27^2\right)^{100}\)và \(\left(25^3\right)^{100}\)
\(\Rightarrow729^{100}< 15625^{100}\)
Tích nha
Ta có : \(27^{200}=\left(3^3\right)^{200}=3^{3.200}=3^{600}\)
\(25^{300}=\left(5^2\right)^{300}=5^{2.300}=5^{600}\)
Vì 3 < 5 nên \(3^{600}< 5^{600}\)
Vậy \(27^{200}< 25^{300}\)
Ta có:\(27^{200}\)=\(27^{2.100}\)=\(\left(27^2\right)^{100}\)=\(729^{100}\)
\(25^{300}\)=\(25^{3.100}\)=\(\left(25^3\right)^{100}\)=\(15625^{100}\)
Vì:\(729^{100}< 15625^{100}\)nên \(27^{200}< 25^3\)
ta có :
27200 = 272.100 = (272)100 = 729100
25300 = 253.100 = (253)100 = 15625100
vì 729 < 15625
=> 729100 < 15625100
hay 27200 < 25300
\(27^{200}=27^{100.2}\) = \(\left(27^2\right)^{100}=729^{100}\)
\(25^{300}=25^{100.3}\)= \(\left(25^3\right)^{100}=15625^{100}\)
=> \(729^{100}< 15625^{100}\)=> \(27^{200}< 25^{300}\)