ta có:2^10=1024>10^3=>2^100>10^30(1)
mặt khác,ta cũng có: 2^10=1024<1025=>2^100<1025^10
=> \(\frac{2^{100}}{10^{30}}=\left(\frac{2^{10}}{10^3}\right)^{10}<\left(\frac{1025}{10^3}\right)^{10}=\left(\frac{41}{40}\right)^{10}\)
ta có:nếu 0<b<a=>ab+b<ab+a =>b(a+1)<a(b+1)=>a+1/b+1<a/b (*)
áp dụng (*) cho bài ta có\(\frac{41}{40}<\frac{40}{39}<\frac{39}{38}<..<\frac{32}{31}<\frac{31}{30}\)
=>\(\frac{2^{100}}{10^{30}}<\left(\frac{41}{40}\right)^{10}<\frac{40}{39}.\frac{39}{38}....\frac{32}{31}.\frac{31}{30}=\frac{4}{3}<2\Rightarrow2^{100}<2.10^{30}\left(2\right)\)
từ (1) và (2)=>10^30<2^100<2.10^30 hay 2^100 có 31 chữ số(đpcm)