Ta có: \(2^{100}=\left(2^{20}\right)^5\)
\(3^{65}=\left(3^{13}\right)^5\)
Vì \(2^{20}< 3^{13}\)
Nên \(2^{100}< 3^{65}\)
Đúng 0
Bình luận (0)
Ta có: \(2^{100}=\left(2^{20}\right)^5\)
\(3^{65}=\left(3^{13}\right)^5\)
Vì \(2^{20}< 3^{13}\)
Nên \(2^{100}< 3^{65}\)
So sanh 2332va3223
so sanh
\(2^{75}va3^{50}\)
so sanh
2100...365
sO sanh 2^100 và 10^31
Tinh tong sau:
N=1^1+2^2+3^3+...+100^100. So sanh N voi 101^102.
BT1: So sanh
\(\frac{-13}{39}va-\frac{21}{63}\)
\(\frac{1}{234567}va-\frac{2}{14}\)
BT2: So sanh
\(\frac{-39}{65}va-\frac{21}{35}\)
\(\frac{1}{2012}va-\frac{1}{14}\)
Cho A = 1/2+2/22+3/23+4/24+......+100/2100. So sanh A voi 2
A=1/1*2+1/2*3+1/3*4+......+1/99*100 so sanh voi 1
cho A=1/2.3/4.5/6........99/100 va B=2/3.4/5.5/6.........100/101 so sanh A va B