\(\frac{2017.2018-1}{2017.2018}=1-\frac{1}{2017.2018}\)
\(\frac{2018.2019-1}{2018.2019}=1-\frac{1}{2018.2019}\)
Ta thấy \(2017.2018< 2018.2019\)
nên \(\frac{1}{2017.1018}>\frac{1}{2018.2019}\)
\(\Rightarrow\)\(1-\frac{1}{2017.2018}< 1-\frac{1}{2018.2019}\)
Vậy \(\frac{2017.2018-1}{2017.2018}< \frac{2018.2019-1}{2018.2019}\)