Đặt \(A=\frac{10^{2006}+9}{10^{2007}+9}\)
\(\Rightarrow10A=\frac{10^{2007}+90}{10^{2007}+9}=1+\frac{81}{10^{2007}+9}\)
\(\frac{10^{2007}+9}{10^{2008}+9}=B\)
\(\Rightarrow10B=\frac{10^{2008}+90}{10^{2008}+9}=1+\frac{81}{10^{2008}+9}\)
Vì\(10A>10B\Rightarrow A>B\)
Đặt \(A=\frac{10^{2006}+9}{10^{2007}+9}\) và \(B=\frac{10^{2007}+9}{10^{2008}+9}\)
* Cách 1 :
Ta có :
\(10A=\frac{10^{2007}+90}{10^{2007}+9}=\frac{10^{2007}+9+81}{10^{2007}+9}=\frac{10^{2007}+9}{10^{2007}+9}+\frac{81}{10^{2007}+9}=1+\frac{81}{10^{2007}+9}\)
\(10B=\frac{10^{2008}+90}{10^{2008}+9}=\frac{10^{2008}+9+81}{10^{2008}+9}=\frac{10^{2008}+9}{10^{2008}+9}+\frac{81}{10^{2008}+9}=1+\frac{81}{10^{2008}+9}\)
Vì \(\frac{81}{10^{2007}+9}>\frac{81}{10^{2008}+9}\) nên \(1+\frac{81}{10^{2007}+9}>1+\frac{81}{10^{2008}+9}\)
Vậy \(A>B\)
* Cách 2 :
Ta có công thức :
\(\frac{a}{b}< \frac{a+m}{b+m}\) \(\left(\frac{a}{b}< 1;a,b,m\inℕ^∗\right)\)
Áp dụng vào ta có :
\(B=\frac{10^{2007}+9}{10^{2008}+9}< \frac{10^{2007}+9+1}{10^{2008}+9+1}=\frac{10^{2007}+10}{10^{2008}+10}=\frac{10\left(10^{2006}+1\right)}{10\left(10^{2007}+1\right)}=\frac{10^{2006}+1}{10^{2007}+1}=A\)
Ta thấy \(B< A\) hay \(A>B\)
Vậy \(A>B\)
Chúc bạn học tốt ~