Đặt A = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+......+\frac{1}{3^9}\)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+......+\frac{1}{3^8}\)
\(\Rightarrow3A-A=1-\frac{1}{3^9}\)
\(\Rightarrow2A=1-\frac{1}{3^9}\)
=> A = \(\frac{1-\frac{1}{3^9}}{2}\)
Mà : \(1-\frac{1}{3^9}< 1\)
Nên : A < \(\frac{1}{2}\)