\(\frac{1}{2}\cdot2^n+4.2^n=9.2^5\)
\(2^n\left(\frac{1}{2}+4\right)=9.32\)
\(2^n\left(\frac{1}{2}+\frac{8}{2}\right)=288\)
\(2^n\cdot\frac{9}{2}=288\)
\(2^n=288:\frac{9}{2}\)
\(2^n=288\cdot\frac{2}{9}\)
\(2^n=64\)
\(2^n=2^6\)
=> n = 6
vậy n = 6
\(\frac{1}{2}\cdot2^n+4.2^n=9.2^5\)
\(2^n\left(\frac{1}{2}+4\right)=9.32\)
\(2^n\left(\frac{1}{2}+\frac{8}{2}\right)=288\)
\(2^n\cdot\frac{9}{2}=288\)
\(2^n=288:\frac{9}{2}\)
\(2^n=288\cdot\frac{2}{9}\)
\(2^n=64\)
\(2^n=2^6\)
=> n = 6
vậy n = 6
Tìm số nguyên n, biết
1 ) 2 − 1 .2 n + 4.2 n = 9.2 5
2 ) 1 2 .2 n + 4.2 n = 9.2 5
3 ) 32 − n .16 n = 2048
4 ) 5 2 n + 1 = 125 n + 25
Cho n là một số nguyên dương thỏa mãn n+1 và 2n+1 đồng thời là 2 số chính phương(số chính phương là bình phương của 1 số nguyên ) CMR: n chia hết 24
Số nguyên n nhỏ nhất thỏa mãn:
(2n+1) chia hết cho(n+2)
Cho số nguyên dương n thỏa mãn 2n+1 và 3n+1 là các số chính phương. CMR: 6n+5 là hợp số
Cho số nguyên dương n thỏa mãn 2n+1 / 3n+1 là bình phương một số hữu tỉ. Chứng minh rằng n chia hết cho 40
tìm cặp số nguyên m,n thỏa mãn 5^2n+2013=5^2n^2+m^2
Có bao nhiêu số nguyên dương n thỏa mãn để số hữu tỉ x=2n+10/n+1 có giá trị nguyên
1. Cho n là số tự nhiên có 2 chữ số. Tìm n biết n+4 và 2n đều là các số chính phương
2. Tìm x,y nguyên thỏa mãn điều kiện xy+2x+10y+19=0
Cho số nguyên dương n thỏa mãn 6n2+5n+1 là số chính phương
a) Chứng minh n chia hết cho 40
b) Chứng minh 5n+3 là hợp số
c) Tìm n nguyên dương sao cho 2n+9 là số nguyên tố
Cho số nguyên dương n thỏa mãn n+1 và 2n+1 đều là số chính phương. Chứng minh n chia hết cho 24
Ai nhanh mik sẽ tik và kb luôn