Ta có :
\(\frac{2015}{2016}=1-\frac{1}{2016}\)
\(\frac{2016}{2017}=1-\frac{1}{2017}\)
\(\frac{2017}{2018}=1-\frac{1}{2018}\)
Do \(\frac{1}{2016}>\frac{1}{2017}>\frac{1}{2018}\)
\(\Rightarrow1-\frac{1}{2016}< 1-\frac{1}{2017}< 1-\frac{1}{2018}\)
\(\Rightarrow\frac{2015}{2016}< \frac{2016}{2017}< \frac{2017}{2018}\)
Số lớn nhất : \(\frac{2017}{2018}\)
Có:
\(\frac{2015}{2016}=1-\frac{1}{2016}\)
\(\frac{2016}{2017}=1-\frac{1}{2017}\)
\(\frac{2017}{2018}=1-\frac{1}{2018}\)
Mà \(\frac{1}{2016}>\frac{1}{2017}>\frac{1}{2018}\)
\(\Rightarrow\frac{2015}{2016}< \frac{2016}{2017}< \frac{2017}{2018}\)
Hay \(\frac{2017}{2018}\) lớn nhất.
Ta có: 1-2015/2016=1/2016
1-2016/2017=1/2017
1-2017/2018=1/2018
Mà 1/2016 > 1/2017 > 1/2018
=> 2015/2016 > 2016/2017 > 2017/2018