A = 21 + 22 + 23+...+ 22016 chia hết cho 8
A = ( 21 + 22 ) + ( 23 + 24 ) + ...+( 22015 + 22016 )
A = ( 21 + 22 ) + 22 . ( 21 + 22 ) + ...+ 22014 . ( 21 + 22 )
A = 8 + 22 . 8 +.....+22014 . 8
A = 8 . ( 1 + 22 + ... + 22014 ) chia hết cho 8 . ^_^ !!!
A = 20 + 21 + 22 + 23 + 24 + ...... + 22016
= (1 + 2 + 4) + 23 + 23.2 + ........ + 23.22013
= 7 + 8 + 8.3 + .......... + 8.22013
= 7 + 8(1 + 2 + .......... + 22013)
Vì 8(1 + 2 + .......... + 22013) chia hết cho 8
=> 7 + 8(1 + 2 + .......... + 22013) chia 8 dư 7
Hay A = 20 + 21 + 22 + 23 + 24 + ...... + 22016 chia 8 dư 7
\(A=2^0+2^1+2^2+...+2^{2016}=\left(1+2+4\right)+\left(2^3+2^4+2^5+...+2^{2016}\right)\)
\(=7+2^3\left(1+2+2^2+...+2^{2013}\right)\)
Vì 23(1+2+22+...+22013) chia hết cho 8 => A chia 8 dư 7