4.(x + 2) chia hết cho x + 1
=> 4x + 8 chia hết cho x + 1
=> 4x + 4 + 4 chia hết cho x + 1
=> 4.(X + 1) + 4 chia hết cho x + 1
=> 4 chia hết cho x + 1
=> x + 1 thuộc Ư(4) = {-4; -2; -1; 1; 2; 4}
=> x thuộc {-5; -3; -2; 0; 1; 3}
Vậy có 6 số nguyên x thỏa mãn.
Ta có: 4(x+2) chia hết cho x+1
=> 4(x+1)+4 chia hết cho x+1
Vi 4x+1 chia hết cho x+1 => 4 chia hết cho x+1
=> x+1 thuộc Ư(4)={1;4;2;-2;-1;-4}
Ta có bảng sau:
x+1 | 1 | 4 | 2 | -2 | -1 | -4 |
x | 0 | 3 | 1 | -3 | -2 | -5 |
=> x={0;3;1;-3;-2;-5}
Vì x + 1 chia hết cho x + 1
=> 4(x + 1) chia hết cho x + 1
Mà 4(x+2) chia hết cho x + 1
=> 4(x+2) - 4(x+1)
= 4(x+2-x-1)
= 4 .1
= 4 chia hết cho x + 1
0;3;1;-3;-2;-5
6 so dung 100%
mik thi violympic rồi mà!