cho A chia thành 3 so lần lượt tỉ lệ với \(\frac{2}{3};\frac{3}{4};\frac{1}{6}\) biết rằng tổng bình phương của 3 số đó = 24309
Cho a, b, c là 3 số hữu tỉ thõa mãn
\(abc=1\)và \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}\)
Chứng minh rằng ít nhất một trong 3 số a, b, c là bình phương của 1 số hữu tỉ
Cho a, b, c là 3 số hữu tỉ thỏa mãn
\(abc=1\) và \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}\)
Chứng minh rằng ít nhất một trong 3 số a, b, c là bình phương của 1 số hữu tỉ
1. Tìm tất cả các số tự nhiên n sao cho: P = 1! + 2! + 3! + ... + n! là số chính phương
2. Chứng minh rằng với n là số nguyên dương bất kì thì:
\(A=1+\frac{1}{4}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1,65\)
3. Tìm tất cả các số tự nhiên không là tổng của 2 hợp số.
4. Tìm các số nguyên x,y thỏa mãn : \(\left(x+2003\right)\left(x+2005\right).4^y=3025\)
Cho a,b,c là 3 số hữu tỉ t/m abc=1
và \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)
CMR 1trong 3 số là bình phương của 1 số hữu tỉ
Mọi người giải giúp mình mấy bài này với nha!!
Bài 1: Cho 2 số thực x, y sao cho x + y ; x2 + y2 ; x4 + y4 là các số nguyên. Chứng minh x3 + y3 cũng là số nguyên
Bài 2: Cho a, b, c là ba số hữu tỉ thõa mãn abc = 1 và \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}\)
Chứng minh rằng ít nhất một trong ba sô a, b, c là bình phương của một số hữu tỉ
Bài 3: Tìm các số nguyên x; y; z thõa mãn bất đẳng thức:
x2 + y2 + c2 < xy + 3y +2z - 3
Tính tổng sau:
\(A=\frac{1}{\left[\sqrt[3]{2}\right]}+\frac{1}{\left[\sqrt[3]{3}\right]}+\frac{1}{\left[\sqrt[3]{4}\right]}+\frac{1}{\left[\sqrt[3]{5}\right]}+\frac{1}{\left[\sqrt[3]{6}\right]}+\frac{1}{\left[\sqrt[3]{7}\right]}+\frac{1}{\left[\sqrt[3]{9}\right]}+...+\frac{1}{\left[\sqrt[3]{2012^3-1}\right]}\)
(trong tổng trên không có các số dạng \(\frac{1}{\left[\sqrt[3]{n}\right]}\) với n là lập phương 1 số nguyên,ví dụ:1 và 8)
1) Cho a, b là 2 số hữu tỉ thỏa mãn\(a^5+b^5=2a^2b^2\)
CMR: 1 - ab là bình phương của 1 số hữu tỉ
2) Cho x, y thỏa mãn \(\left|x-2005\right|+\left|x-2006\right|+\left|y-2007\right|+\left|x-2008\right|=3\) Tìm x, y.
3) Cho \(A=\left(1-\frac{1}{1+2}\right).\left(1-\frac{1}{1+2+3}\right).\left(1-\frac{1}{1+2+3+4}\right)...\left(1-\frac{1}{1+2+3+...+n}\right)\)
với n-1 thừa số và \(B=\frac{n+2}{n}\). Tìm \(\frac{A}{B}\)
Bài 1: Tìm số nguyên a lớn nhất sao cho số \(T=4^{27}+4^{1016}+4^a\) là số chính phương
Bài 2: Cho số tự nhiên \(N=2003^{2004}\). Viết N thành tổng của k số tự nhiên nào đó \(n_1,n_2,...,n_k.\)\(S=n_1^3+n_2^3+...+n_k^3.\)Tìm số dư của phép chia S cho 6.
Bài 3: CMR: \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}>2\left(\sqrt{n+1}-1\right)\)
Với n là số nguyên dương