Lời giải:
$-1=\cos (a-b)=\cos a\cos b+\sin a\sin b$
$\Rightarrow -2=2\cos a\cos b+2\sin a\sin b$
Mà: $2=\cos ^2a+\sin ^2a+\cos ^2b+\sin ^2b$
Cộng theo vế 2 đẳng thức trên lại suy ra:
$0=(\cos a+\cos b)^2+(\sin a+\sin b)^2$
$\Rightarrow \cos a=-\cos b; \sin a=-\sin b$
$\frac{1}{2}=\sin (a+b)=\sin a\cos b-\cos a\sin b$
$=(-\sin b)(-\cos a)-\cos a\sin b=0$ (vô lý)
DO đó không tính được $\cos a\cos b$