Cho S = \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{48}+\frac{1}{49}+\frac{1}{50}\)và P = \(\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{48}{2}+\frac{49}{1}\). Tính \(\frac{S}{P}\)
Cho S=\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.........+\frac{1}{48}+\frac{1}{49}+\frac{1}{50}\) VÀ
P=\(\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+......+\frac{48}{2}+\frac{49}{1}\)
Tính \(\frac{S}{P}\)
Cho S = \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\) và \(\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{49}{1}\) . Tính \(\frac{s}{p}\)
Cho S = \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\) và \(\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{49}{1}\) . Tính \(\frac{s}{p}\)
CHO: \(S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\)
\(P=\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{48}{2}+\frac{49}{1}\)
Tính \(\frac{S}{P}\)
Tính A = \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}}{\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{48}{2}+\frac{49}{1}}\)
Cho S = \(\frac{1}{2}\)+ \(\frac{1}{3}\)+\(\frac{1}{4}\)+…\(\frac{1}{49}\)+\(\frac{1}{50}\) và P = \(\frac{1}{49}\)+\(\frac{2}{48}\)+ …+\(\frac{48}{2}\)+\(\frac{49}{1}\)
Hãy tính \(\frac{S}{P}\)
tính : S = \(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+.....+\frac{48}{49}+\frac{49}{50}\)
Chứng minh rằng:\(\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+....+\frac{1}{49}+\frac{1}{50}=\frac{91}{50}-\frac{97}{49}+\frac{95}{48}-\frac{93}{47}+.....+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}=1\)