S=2+22+23+..+220
=>S=(2+22)+(23+24)+...+(219+220)
=>S=1.(2+22)+22.(2+22)+..+218(2+22)
=>S=1.6+2^2.6+...+2^18.6
=>S=6(1+2^2+..+2^18) chia hết cho 6
=>dpcm
S=2+22+23+..+220
=>S=(2+22)+(23+24)+...+(219+220)
=>S=1.(2+22)+22.(2+22)+..+218(2+22)
=>S=1.6+2^2.6+...+2^18.6
=>S=6(1+2^2+..+2^18) chia hết cho 6
=>dpcm
Bài 2: a) Cho A = 2 + 2 mũ 2 + 2 mũ 3 + …+ 2 mũ 20 + 2 mũ 21 . Chứng minh: A chia hết cho 7. b) Cho S = 3+3 mũ 2 + 3 mũ 3 + ... + 3 9 . Chứng tỏ rằng S chia hết cho 13
Bài 2: a) Cho A = 2 + 2 mũ 2 + 2 mũ 3 + …+ 2 mũ 20 + 2 mũ 21 . Chứng minh: A chia hết cho 7. b) Cho S = 3+3 mũ 2 + 3 mũ 3 + ... + 3 9 . Chứng tỏ rằng S chia hết cho 13
Bài 2: a) Cho A = 2 + 2 mũ 2 + 2 mũ 3 + …+ 2 mũ 20 + 2 mũ 21 . Chứng minh: A chia hết cho 7. b) Cho S = 3+3 mũ 2 + 3 mũ 3 + ... + 3 9 . Chứng tỏ rằng S chia hết cho 13
Bài 1: Cho A= 2 + 2 ^ 2 + 2 ^ 3 +.......+2^ 60 . Chứng tỏ rằng: 4 chia hết cho 3,5,7. Bài 2: Cho S= 1 + 5 ^ 2 + 5 ^ 4 + 5 ^ 6 +***+5^ 2020 . Chứng minh rằng S chia hết cho 313 Bài 3: Tính A= 5 + 5 ^ 2 + 5 ^ 3 +...+5^ 12
Bài 1: Cho S= 3 + 3^2 + 3^3 +...+ 3^100. Chứng minh rằng S chia hết cho 4. Tìm chữ số tận cùng của S.
Bài 2: Chứng minh rằng: ( 1+2+2^2+2^3+...+2^17) chia hết cho 9
Bài 1: Cho S= 3 + 3^2 +3^3 +...+3^100. Chứng minh rằng S chia hết cho 4. Tìm chữ số tận cùng của S.
Bài 2: Chứng minh rằng: ( 1 + 2 + 2^2 + 2^3 +...+ 2^17 ) chia hết cho 9
Cho tổng:S=3^1+3^2+3^3+.....+ 3^20.Chứng minh rằng:
a)S chia hết cho 12
b)S chia hết cho 120
c)S không chia hết cho 13
Cho S = 1+2+2^2+2^3+2^4+2^5+2^6+2^7
Chứng tỏ rằng S chia hết cho 4
Cho S = 1+2+2^2+2^3+2^4+2^5+2^6+2^7
Chứng tỏ rằng S chia hết cho 4 VÀ 13
Chứng minh rằng: S=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8 chia hết cho (-6)