\(S=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
\(2S=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)
\(2S+S=\left(2^{101}-2^{100}+2^{99}-...-2^2\right)-\left(2^{100}-2^{99}+2^{98}-...-2\right)\)
\(3S=2^{101}-2\)
\(S=\frac{2^{101}-2}{3}\)
\(S=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
\(\Rightarrow\) \(2S=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)
\(\Rightarrow\) \(3S=2^{101}-2\)
\(\Rightarrow\) \(S=\frac{2^{101}-2}{3}\)