\(\frac{1}{2\times4}+\frac{1}{4\times6}+\frac{1}{6\times8}+\cdot\cdot\cdot+\frac{1}{96\times98}+\frac{1}{98\times100}\)= ?
tính :\(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+\frac{1}{4\times5\times6}+\frac{1}{5\times6\times7}+\frac{1}{6\times7\times8}+\frac{1}{7\times8\times9}+\frac{1}{8\times9\times10}\)
\(\frac{1}{2\times4}+\frac{1}{4\times6}+\frac{1}{6\times8}+...+\frac{1}{12\times14}=?\)
\(y=\frac{1\times2\times3+2\times4\times6+4\times8\times12+8\times16\times24}{2\times3\times4+4\times6\times8+8\times12\times16+16\times24\times32}\frac{ }{ }\)
Tính nhanh: D=\(\frac{4}{2\times3\times4}+\frac{4}{3\times4\times5}+\frac{4}{4\times5\times6}+.......+\frac{4}{98\times99\times100}\)
Tính nhanh:
C=\(\frac{3}{2\times3\times4}+\frac{3}{3\times4\times5}+\frac{3}{4\times5\times6}+......+\frac{3}{98\times99\times100}\)
\(\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\right)\div\left(\frac{1}{1\times2}+\frac{1}{3\times4}+\frac{1}{5\times6}+...+\frac{1}{99\times100}\right)\)
So sánh :
A = \(\frac{1}{2\times4}\)+ \(\frac{1}{4\times6}\)+\(\frac{1}{6\times8}\)+ ... + \(\frac{1}{2012\times2014}\)và B = \(\frac{1}{2}\)
\(\frac{4}{2\times4}+\frac{4}{4\times6}+\frac{4}{6\times8}+\frac{4}{8\times10}+...+\frac{4}{16\times18}+\frac{4}{18\times20}\)