Cho \(S=\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2012!}\) . Chứng minh rằng S < 2
Cho S = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{2012}}+\frac{1}{2^{2013}}\) Chứng tỏ S < 1
Chứng minh rằng:
S = \(1+\frac{1}{2^2^{ }}+\frac{1}{3^2}+...+\frac{1}{2012^2}\)không phải là số tự nhiên
Chứng tỏ:\(S=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2012!}< 3\)
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)
\(P=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}+\frac{1}{2013}\)
Tính\(\left(S-P\right)^{2013}\)
\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)
Chứng minh rằng : S > 1
dạng 1 : so sánh
a) P = \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2013^2}+\frac{1}{2014^2}\)và Q = \(1\frac{3}{4}\)
dạng 2 : toán chứng minh
1. cho S = \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{130}\)chứng minh rằng : \(\frac{1}{4}< S< \frac{91}{330}\)
2. cho S = \(\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+...+\frac{5}{49}\). CMR : 3 < S < 8
3. CMR : \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2^{1999}}>1000\)
chứng minh\(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2012}-\frac{1}{2013}+\frac{1}{2014}< \frac{2}{5}\)