Trương Tuấn Hưng

rút gọn

\(\sqrt{1^2+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}....+\sqrt{1+\frac{1}{99^2}+\frac{1}{100^2}}\)

Ngô Chi Lan
19 tháng 9 2020 lúc 21:04

Dễ hiểu với cách xét bài toán phụ sau:

Với \(a+b+c=0\) và a,b,c khác 0

Ta có: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

Thật vậy, ta CM như sau:

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\cdot\frac{a+b+c}{abc}\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\cdot\frac{0}{abc}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

=> BT được chứng minh

Áp dụng vào bài chính, ta được:

\(\sqrt{1^2+\frac{1}{1^2}+\frac{1}{2^2}}=\sqrt{\frac{1}{1^2}+\frac{1}{1^2}+\frac{1}{\left(-2\right)^2}}=\sqrt{\left(\frac{1}{1}+\frac{1}{1}-\frac{1}{2}\right)^2}=1+1-\frac{1}{2}\)

Tương tự:

\(\sqrt{1^2+\frac{1}{2^2}+\frac{1}{3^2}}=1+\frac{1}{2}-\frac{1}{3}\)

...

\(\sqrt{1+\frac{1}{99^2}+\frac{1}{100^2}}=1+\frac{1}{99}-\frac{1}{100}\)

Cộng vế lại ta được:

\(BT=1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{99}-\frac{1}{100}\)

\(=100-\frac{1}{100}=99,99\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
o0o I am a studious pers...
Xem chi tiết
Nguyễn Thị Thương
Xem chi tiết
Phạm Minh Tuấn
Xem chi tiết
NguyenHa ThaoLinh
Xem chi tiết
Pham Hoàng Lâm
Xem chi tiết
Trần Hoàng Thiên Bảo
Xem chi tiết
Cầm Dương
Xem chi tiết
Nguyễn Trọng Kiên
Xem chi tiết
Hàn Băng
Xem chi tiết