Vì \(a+b+c=0\) \(\Rightarrow\) \(c=-a-b\)
Gọi \(M=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\) , ta có:
\(M.\frac{c}{a-b}=1+\frac{c}{a-b}\left(\frac{b-c}{a}+\frac{c-a}{b}\right)=1+\frac{c}{a-b}.\frac{\left(b^2-bc+ac-a^2\right)}{ab}=1+\frac{c}{a-b}.\frac{\left(a-b\right)\left(c-a-b\right)}{ab}=1+\frac{2c^2}{ab}=1+\frac{2c^3}{abc}\)
Tương tự, \(M.\frac{a}{b-c}=1+\frac{2a^3}{abc};\) \(M.\frac{b}{c-a}=1+\frac{2b^3}{abc}\)
Mặt khác, ta cũng có: từ \(a+b+c=0\), suy ra \(a^3+b^3+c^3=3abc\)
Vậy, \(B=3+\frac{2\left(a^3+b^3+c^3\right)}{abc}=3+\frac{2.3abc}{abc}=3+6=9\) (vì \(a,b,c\ne0\) nên \(abc\ne0\) )